
CHAPTER 5

HTML,CSS基礎（２）

リセットCSS,ノーマライズCSS

n「UAスタイルシート」を打ち消したり、
”いい感じ”に調整したりするテクニック

n “いいかんじにする” NormalizeCSS

n “完全にリセットする” resetCSS

n CDN (Content Delivery Network)の利用

リセットCSS,ノーマライズCSSのはじまり

https://meyerweb.com/eric/tools/css/reset/

リセットCSS - destyle.css

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/destyle.css@1.0.15/destyle.css"/>

ノーマライズCSS - normalize.css

<link rel="stylesheet” href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css"/>

リセットCSS,ノーマライズCSS

nブラウザ間の差異を均一化する
（フォントなどは別途指定が必要、Safariがゴシック体になるとかではない）

n リストのパディングとマージン

n ボーダーの見た目

n ボタンやマージンのサイズなど

リセットCSS,ノーマライズCSS ③modern.css

<link rel="stylesheet” href="https://unpkg.com/modern-css-reset/dist/reset.min.css"/>

レイアウトのためのCSS① Flex

n ボックスモデルの復習

n display: flex（Flexbox）を使った横並びのレイアウト

nFlexboxは要素を一列に並べる

レイアウトのためのCSS① Flex

<div class="wrap-flex">
<div class="item">Flex item</div>
<div class="item">Flex item</div>
<div class="item">Flex item</div>
</div>

.wrap-flex { display: flex; }

HTML

CSS

レイアウトのためのCSS① Flex

<div class="container">
<div class="box"></div>
</div>

.container {
border: 2px solid #1b0303;
box-sizing: border-box;
width: 100%;
 height: 300px;
 }

HTML

CSS .container {
display: flex;

justify-content: center;
align-items: center;
}

.box {
background-
color: #f53838;
width: 300px;
height: 200px;
 }

↓追加してみよう

レイアウトのためのCSS ② Grid

n display:grid

n Gridでは行と列の格子状にレイアウトを定義する必要がある

n 基本はまず横方向のみでOK ▶ grid-template-column

n 縦方向に制御したい場合は▶ grid-template-rows

レイアウトのためのCSS ② Grid

レイアウトのためのCSS ② Grid

レイアウトのためのCSS ② Grid

<div class="wrap-grid">

 <div class="item">Grid item 1</div>

 <div class="item">Grid item 2</div>

 <div class="item">Grid item 3</div>

 <div class="item">Grid item 4</div>

<div class="item">Grid item 5</div>

</div>

.wrap-grid {

display: grid;

grid-template-columns: 1fr 1fr;

gap: 10px;

width: 400px; border: 2px solid
#00a0e9; padding: 10px; }

.item { /*見た目に関する部分*/

background-color: #e6f7ff; border:
1px solid #00a0e9; padding: 10px;
text-align: center; }

HTML CSS

レイアウトのためのCSS ② Grid

n grid-template-columns: 1fr 1fr; の意味と役割

Gridコンテナの列（Columns）の数とそれぞれの幅を
定義するために使われる

grid-template-columns: 100px auto 1fr; /*3列を定義*/
1列目 2列目 3列目

「fr」はGridコンテナ内の利用可能な残りのスペースを分割する比率のこと

レイアウトのためのCSS ② Grid

単位 意味 動作 主な⽤途

fr
残りの利⽤可能な
スペースの⽐率

コンテナ幅に合わせて
均等に幅が変化する
（レスポンシブ）

等分割レイアウト
（50% / 50% など）

auto
コンテンツの量に応じて

幅が決定される
コンテンツの幅を優先
的に取り、残りのス
ペースを分配する

サイズの決まっていな
いサイドバーやメイン

コンテンツ

両者＋絶対値（●●pxなど）を組み合わせるのがセオリー

Displayプロパティについて

1. block⇒要素が横までいっぱいに広がり、縦に並んでいく
2. inline⇒要素が平ぺったく横に並んでいく

3. inline-block⇒blockとinlineの中間（ざっくり言うと）

4. none⇒非表示になる
5. flex⇒フレックス化

6. grid⇒グリッド化

displey:プロパティの基本の値6種類

Displayプロパティについて

n 縦に積まれていく
n 幅 width と高さ height が指定できる

n デフォルトCSSでは上下に余白ができる
n marginとpaddingを指定できる
n text-align は要素の中身に適応される

n vertical-align は指定できない

displey:blockの特徴

Displayプロパティについて

n横に並んでいく

n幅 width と高さ height は指定できない。内容物のサイズで大きさが決まる

n左右だけ margin を指定できる

n左右に padding を指定できる（実は上下も指定できるけど、前後の行や要素にかぶって
しまうので、あまり効果はわからない）

n text-align を親ブロックに付けることで揃えを指定できる

nvertical-align を指定できる

displey:inline;の特徴

マルチデバイス対応について

n レスポンシブ（RWD）

nアダプティブ

n レスポンシブデザインのほうが実装難易度が高い

マルチデバイス対応について

RWDのための3つの用語

n メディアクエリ

n 2つのピクセル（ デバイスピクセル / CSSピクセル ）

n ビューポート

RWDのための3つの用語 - メディアクエリ

n 横幅を元にデザインを切り替える CSS のメディアクエリ

body{color:red;}
@media (max-width: 800px) {
body{color:pink;} }
@media (max-width: 450px) {
body{color:orange;} }

n 切り替わる数値を「ブレークポイント」と言う

● メディアクエリの例（CSS）

(max-width: xxxpx)＝最⼤幅
もしくは
(min-width: xxxpx)＝最⼩幅
と記述する

RWDのための3つの用語 - メディアクエリ

n モバイルファーストの書き方
/* 1. まずモバイル（最⼩幅）のスタイルを記述する */
body { color: orange; }

/* 2. 次にmin-widthを使って、画⾯を⼤きくしていく */
@media (min-width: 451px) {
 body { color: pink; } /* タブレットサイズになったら変更 */
}
@media (min-width: 801px) {
 body { color: red; } /* PCサイズになったら変更 */
}

RWDのための3つの用語 - メディアクエリ

単位 意味 主な⽤途

max-width 最⼤幅（この幅以下で適⽤） PCファースト（⼤きい画⾯から⼩さい画⾯へ）で使われる。

min-width 最⼩幅（この幅以上で適⽤） モバイルファースト（⼩さい画⾯から⼤きい画⾯へ）で使われる。
推奨されるアプローチ。

n カンプはどちらから作る？→どちらでもOK

n まとめ

RWDのための3つの用語 - ２つのピクセル

n 画面解像度を示す「デバイスピクセル」

n 同じサイズで表示できる「CSSピクセル」

n デバイスピクセルとCSSピクセルの 比率を示した
 デバイスピクセル比

RWDのための3つの用語 - ２つのピクセル

https://www.apple.com/jp/iphone-15-pro/specs/

https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/
https://www.apple.com/jp/iphone-15-pro/specs/

RWDのための3つの用語 - ２つのピクセル

こちら（設定あり）

と

こちら（設定なし）

を携帯で見比べてみましょう 設定なし設定あり

https://web-lesson.work/sample/font-size-sample1.html
https://web-lesson.work/sample/font-size-sample2.html

RWDのための3つの用語 - ２つのピクセル

表⽰はデバイスピクセル⽐で違います
iPhone10で⾒ています

RWDのための3つの用語 - ビューポート

n「設定」とは

nHTMLのviewport（ビューポート）指定

n viewportを設定することでデバイスピクセルではなく
 CSSピクセルでサイトが表示される

<meta name=”viewport” content=”width=device-width, initial-scale=1″>

● CSSピクセルで表示させるためのmetaタグの指定

CHAPTER 7

Web制作のワークフロー
サーバー・ドメイン基礎

Webの色表現と書き出し形式

n ディスプレイでの表現はRGBを使用する

n ディスプレイによって変わる表示

n カラーコードの種類

#000

#000000

● Hex

rgb(0, 0, 0) ;

● RGB

rgb(0, 0, 0,0.5) ;

● RGBa

※ a → アルファ（透明度）

Webの色表現と書き出し形式

n PNG,JPGを基本とする

n ファイル名は半角英数字を使用

n SVGのメリットと書き出しの注意点、デモ

n webP, AVIF

Webの色表現と書き出し形式

n 書き出す画像には「カラープロファイル」を埋め込む

n sRGB

n Display P3

Webデザインの単位

n 文字のサイズ（本文のサイズ）は
 いくつを使用すべきなのか？

n 標準は16px

n 10px以下は可読性が損なわれる
10px：一般的なモニタでの表示サイズでは7～8pt（ 2～3mm ）相当の大きさ

「ピクセル」単位の問題点と解決策

n 絶対的な固定値であることのデメリット
レイアウト全体や文字サイズをユーザーの
ニーズに合わせて柔軟に調整できない

n レスポンシブ対応の手間（PCでは20px,スマホでは18pxなど）

そこで（基準のPixelを持ちつつ）別の「相対的な」単位を用いる

「ピクセル」単位の問題点と解決策

n「em（イーエム）」は、親要素のフォントサイズに対する相
対単位 1emは親要素のフォントサイズと等しくなる

これを解決するのが、「rem（レム）」

n 親の親の…と連鎖するとかなり複雑になる

「ピクセル」単位の問題点と解決策

n「rem（レム）」は、ルート要素（<html>タグに指定されてい
るフォントサイズ）が基準になる

n 基準が一定なので計算が簡単

nレスポンシブとアクセシビリティに配慮

「ピクセル」単位の問題点と解決策

n1remが10pixelになるようにするテクニックがよく使われる

html { font-size: 62.5%; }

1.6rem：今は16pxの値だが、環境に応じて柔軟に変化する
16px相当の値

16px ：16 pxから動かない値

画面や要素の幅を示す単位

nvh と vw は、ブラウザのビューポート（画面表示領域）の
サイズを基準とする相対単位

nwidth: 50vw; と指定すると、要素の幅は画面幅のちょうど半分
（50%）になる

n100% は親要素のサイズを基準とするのに対し、vh/vw などの単
位は、ブラウザの表示領域全体（ビューポート）が基準となる

画面や要素の幅を示す単位

単位 名称 意味 主な用途

svh / svw Small Viewport
最小の安定したビューポートサイ
ズ（URLバーが表示されている
状態）を基準とする。

スクロール中にアドレスバーが消
えても、レイアウトが崩れないよ
うにしたい場合に使う。

lvh / lvw
最大のビューポートサイズ
（URLバーが非表示の状態）を
基準とする。

画面全体を最大限利用したい場合
に使う。

dvh / dvw Dynamic Viewport
スクロールに応じて動的に変化す
る実際のビューポートサイズを基
準とする。

常に画面のサイズにぴったり合わ
せたい場合に使う。

画面や要素の幅を示す単位

<div class="key-visual-container">

</div>

.key-visual-container {
height: 100dvh;
width: 100vw; /* 幅は画⾯幅全体に固定 */
overflow: hidden; /* はみ出た画像部分を隠す */

}

 .key-visual-container img {
width: 100%; height: 100%; /* 画像のアスペクト⽐を保ちつつ、コンテナ全体を覆うように拡⼤ */
object-fit: cover;

}

タイポグラフィのこだわりはどこまで？

タイポグラフィのこだわりはどこまで？

OpenTypeフォントにfont-feature-settingsを適⽤する

Webにおける明朝体

n Webサイトに明朝体が少ない理由

n 明朝体は使えないのか

n 余談：縦書きは使えないのか？

h1 {

writing-mode: vertical-rl;
}

● CSSのwriting-modeプロパティ

Webにおける明朝体

参考資料：https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html

https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html
https://www.adobe.com/jp/creativecloud/design/discover/web-fonts.html

Webにおける明朝体

参考資料：たてよこWebアワード https://tategaki.github.io/awards/

https://tategaki.github.io/awards/
https://tategaki.github.io/awards/
https://tategaki.github.io/awards/

Webサイトのフォントは環境で変化する

n どちらもCSSのfont-family:プロパティで指定する

body {

font-family: "MS Pゴシック" ;
}

● CSSのfont-familyプロパティ

n デバイスフォントを指定する

n Webフォントを指定する

Webサイトのフォントは環境で変化する

n デバイスフォントの表示の仕組み

Webサイトのフォントは環境で変化する

n デバイスフォントの表示の仕組み

特定の書体を使いたいときはWebフォントを利用する

n Webフォントを使わない場合、OSに無いフォントは表示されない
OS デフォルトで入っている書体の例 フォントを確認できるURL

macOS ヒラギノ角ゴシック、ヒラギノ
明朝、游ゴシック、游明朝 https://support.apple.com/ja-jp/103197

Windows メイリオ、游ゴシック、游明朝 https://learn.microsoft.com/en-us/typography/fonts/
windows_11_font_list

iOS ヒラギノ角ゴシック、ヒラギノ明朝 https://developer.apple.com/fonts/system-fonts/

Android 6.0以降 Noto Sans CJK なし

特定の書体を使いたいときはWebフォントを利用する

n 特定のフォントを使いたいときはWebフォントを利用する
● Webサイトのデータなどと同様にネットワーク上にフォントデータを設置し、
そこにアクセスすることで様々な環境でも同じフォントが使用できる仕組み

● Google Fonts ● Adobe Fonts

● FONT PLUS ● モリサワ TypeSquare

特定の書体を使いたいときはWebフォントを利用する

n 必要な文字だけを抽出するサブセット化

n フォントデータを自社のサーバーに格納する方式と
 CDNで利用する方式がある

JavaScriptとPHP

n PHPを使った共通要素のインクルード（読み込み）
1. headerを用意して、headerだけをheader.phpにする

2. index.htmlをindex.phpにする

3. Index,php内に<?php include ‘common/header.php’; ?>等と記述

検証（確認）する

検証（確認）する

アップロードして公開する

n FTPアプリでのアップロード

n SSH（Secure Shell）を使ったアップロード

n サーバーが必要
「実際のサイト」の他に「検証環境」があると良い

ドメインとサーバー

n この作業を指してDNSの設定という

n 小規模なサイト向けのレンタルサーバーであれば
 高度な知識は不要

n レンタルサーバーから提供されるアドレス（URL）
とは別に独自のアドレス＝ドメインを紐づける

Other CHAPTER

コーディングに困るデザインデータ

背景として実装するなら「元素材」が必要

n 画像を使った背景プロパティでは「元の素材」を一緒に渡す

n 繰り返しのパターンをbackgroundプロパティで実装する場合

n リキッド画像をbackgroundプロパティで実装する場合

不揃いなグラデーションはコードを煩雑にする

n 「ちょっと違うグラデーション」を作らない

n Figmaのスタイル機能、バリアブル機能を活用する

本文に「字切り」の改行は入れない

n 実務におけるレスポンシブウェブデザインでの改行対応

n Webの「字切り」は万人の環境で同一の表示ができない

n 字切りをしたい場合とその対応

謎の余白を作らない

n 「CSSが苦手」で画像に余白を持たせるとCSSが複雑になる

必要か不必要かがわからないデータは存在させない

n デザインの案？状態の変化？明確に指示を入れる

n元の素材データの管理はしっかりと。シェアは場合により

n Figmaのページ機能を活用してもOK

更新でデザインがどう変化するかを想定する

n 文字数の問題、数の問題

n リリース後のコンテンツの増減によって崩れやすい見た目

「動かしたい、でもどう動くかわからない」はNG！

- インタラクションはユーザに行動を喚起させる

n インタラクションをつける理由と注意点

n 動かすことのデメリットも考慮する

n インタラクションの伝え方
- 参考例を見せる / アプリで共有する / 完全にお任せする

